Article ID: CBB817039874

Ontological Argument and Infinity in Spinoza’s Thought (2020)

unapi

If the words in Spinoza’s Ethics are considered as symbols, then certain words in the definitions of the Ethics can be replaced with symbols from set theory and we can reexamine Spinoza’s first definitions within a logical–mathematical frame. The authors believe that, some aspects of Spinoza’s work can be explained and illustrated through mathematics. A semantic relation between the definitions of the philosopher and set theory is presented. It is explained each chosen symbol. The ontological argument is developed through modal logic. And finally, we present some conclusions drawn from this work.

...More
Citation URI
data.isiscb.org/p/isis/citation/CBB817039874

This citation is part of the Isis database.

Similar Citations

Article Andrea Sangiacomo; (2015)
The Ontology of Determination: From Descartes to Spinoza (/p/isis/citation/CBB003679171/) unapi

Article Fraenkel, Carlos; (2009)
Ḥasdai Crescas on God as the Place of the World and Spinoza's Notion of God as Res Extensa (/p/isis/citation/CBB000930649/) unapi

Article Colin McCullough-Benner; (2020)
Representing the World with Inconsistent Mathematics (/p/isis/citation/CBB210493760/) unapi

Article Bussotti, Paolo; Tapp, Christian; (2009)
The Influence of Spinoza's Concept of Infinity on Cantor's Set Theory (/p/isis/citation/CBB000931166/) unapi

Article Meropi Morfouli; (2019)
Philippe de La Hire et les horloges à pendule (/p/isis/citation/CBB386058528/) unapi

Article Kvasz, Ladislav; (2005)
The Mathematisation of Nature and Newtonian Physics (/p/isis/citation/CBB000670513/) unapi

Book Wolff, Christoph; (2000)
Johann Sebastian Bach: The Learned Musician (/p/isis/citation/CBB000320288/) unapi

Book Rommevaux, Sabine; (2010)
Mathématiques et connaissance du monde réel avant Galilée (/p/isis/citation/CBB001023160/) unapi

Thesis Domski, Mary; (2003)
Geometry and Experimental Method in Locke, Newton and Kant (/p/isis/citation/CBB001561970/) unapi

Article Palmieri, Paolo; (2003)
Mental Models in Galileo's Early Mathematization of Nature (/p/isis/citation/CBB000340879/) unapi

Article Manuel Bertolini; (2017)
Numeri e alterità. L'eco di Pitagora nella Taumatologia di Giovan Battista Della Porta (/p/isis/citation/CBB784619821/) unapi

Book Lacombe, Michael A.; (2012)
Political Gastronomy: Food and Authority in the English Atlantic World (/p/isis/citation/CBB001214734/) unapi

Article Leduc, Christian; (2014)
The Epistemological Functions of Symbolization in Leibniz's Universal Characteristic (/p/isis/citation/CBB001201188/) unapi

Chapter Cañizares-Esguerra, Jorge; (2008)
Typological Readings of Nature: The Book of Nature in Lastanosa's Age (/p/isis/citation/CBB001023409/) unapi

Article Stedall, Jacqueline; (2007)
Symbolism, Combinations, and Visual Imagery in the Mathematics of Thomas Harriot (/p/isis/citation/CBB000773210/) unapi

Book Miles, Margaret R.; (2008)
A Complex Delight: The Secularization of the Breast, 1350--1750 (/p/isis/citation/CBB000774278/) unapi

Article Tina Asmussen; (2020)
Spirited metals and the oeconomy of resources in early modern European mining (/p/isis/citation/CBB491143171/) unapi

Chapter Spaans, Joke; (2011)
Art, Science and Religion in Romeyn de Hooghe's Hieroglyphica (/p/isis/citation/CBB001201621/) unapi

Book Patrick J. Murray; (2022)
Intellectual and Imaginative Cartographies in Early Modern England (/p/isis/citation/CBB171349738/) unapi

Authors & Contributors
Bussotti, Paolo
Cañizares-Esguerra, Jorge
Domski, Mary
Fraenkel, Carlos
Kvasz, Ladislav
LaCombe, Michael
Journals
Studies in History and Philosophy of Science
Aleph: Historical Studies in Science and Judaism
Archives Internationales d'Histoire des Sciences
British Journal for the Philosophy of Science
Bruniana & Campanelliana: Ricerche Filosofiche e Materiali Storico-testuali
Earth Sciences History: Journal of the History of the Earth Sciences Society
Publishers
Indiana University
Taylor & Francis
Omniscience
University of California Press
W. W. Norton & Co.
Concepts
Symbolism; symbolic representation
Mathematics and its relationship to nature
Mathematics
Science and literature
Science and religion
Science and art
People
Newton, Isaac
Spinoza, Baruch
Harriot, Thomas
Leibniz, Gottfried Wilhelm von
Bach, Johann Sebastian
Bradwardine, Thomas
Time Periods
17th century
16th century
18th century
Medieval
Renaissance
15th century
Places
China
Europe
Germany
Italy
Netherlands
United States
Comments

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment