Frisch, Uriel (Author)
Villone, Barbara (Author)
Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century -- besides Hankel, foremost by George Stokes and Maurice Lévy -- and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
...More
Article
Frisch, Uriel;
Villone, Barbara;
(2014)
Cauchy's Almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow
(/p/isis/citation/CBB001451853/)
Article
Eckert, Michael;
(2002)
Euler and the Fountains of Sanssouci
(/p/isis/citation/CBB000300069/)
Thesis
Hepburn, Brian S.;
(2007)
Equilibrium and Explanation in 18th-Century Mechanics
(/p/isis/citation/CBB001560501/)
Article
Lubet, Jean-Pierre;
(2010)
Calcul symbolique et calcul intégral de Lagrange à Cauchy
(/p/isis/citation/CBB001033635/)
Article
Delcourt, Jean;
(2011)
Analyse et géométrie, histoire des courbes gauches De Clairaut à Darboux
(/p/isis/citation/CBB001034291/)
Thesis
Walker, Helen E.;
(1983)
Taylor's theorem with remainder: The legacy of Lagrange, Ampère, and Cauchy
(/p/isis/citation/CBB001563379/)
Article
Elisa Patergnani;
Luigi Pepe;
(2021)
Les mathématiciens français et italiens du «siècle long»: 1700-1814
(/p/isis/citation/CBB124027972/)
Article
Erik R. Tou;
(2019)
Bernoullian Influences on Leonhard Euler’s Early Fluid Mechanics
(/p/isis/citation/CBB776843735/)
Article
Sylvio R. Bistafa;
(2015)
Euler’s Friction of Fluids Theory and the Estimation of Fountain Jet Heights
(/p/isis/citation/CBB846198439/)
Article
Suay Belenguer, Juan Miguel;
(2008)
Los Molinos y las Cometas por Mr. Euler le fils. Modelos matemáticos para las máquinas hidráulicas en el siglo XVIII
(/p/isis/citation/CBB000933318/)
Article
Simonov, N.I.;
(1974)
O giperbolicheskikh differentsial'nykh uravneniiakh u Eilera i u Koshi. (Sur les équations aux dérivées partielles du type hyperbolique chez Euler et chez Cauchy.)
(/p/isis/citation/CBB000023698/)
Book
Hagler, Gina;
(2013)
Modeling Ships and Space Craft: The Science and Art of Mastering the Oceans and Sky
(/p/isis/citation/CBB001213186/)
Article
Johannes Lenhard;
Simon Stephan;
Hans Hasse;
(2024)
A child of prediction. On the History, Ontology, and Computation of the Lennard-Jonesium
(/p/isis/citation/CBB856723613/)
Book
Paolo Freguglia;
Mariano Giaquinta;
(2016)
The Early Period of the Calculus of Variations
(/p/isis/citation/CBB578052686/)
Article
Maria Teresa Borgato;
(2013)
Lagrange et les fonds de pension pour les veuves
(/p/isis/citation/CBB017117785/)
Book
Pulte, Helmut;
(1989)
Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationalen Mechanik: Eine Untersuchung zur Grundlegungsproblematik bei Leonhard Euler, Pierre Louis Moreau de Maupertuis und Joseph Louis Lagrange
(/p/isis/citation/CBB000045569/)
Article
Yuan, Min;
Jia, Xiaoyong;
(2008)
A Historical Survey: Why Did Lagrange Redefine the Complete Integral of a First-Order Partial Differential Equation
(/p/isis/citation/CBB000933545/)
Article
Jia, Xiaoyong;
Li, Yuewu;
(2009)
The Calculus of Variations from Euler to Lagrange: As a Result of Formalized Improvement
(/p/isis/citation/CBB000933767/)
Article
Demidov, Serge S.;
(2008)
D'Alembert et la notion de solution des équations différentielles aux dérivées partielles
(/p/isis/citation/CBB000933173/)
Article
Guillame Jouve;
(2017)
The First Works of D'Alembert and Euler About the Problem of Vibrating Strings from the Perspective of Their Correspondence
(/p/isis/citation/CBB238196040/)
Be the first to comment!