Shabel, Lisa A. (Author)
Description Argues that, according to Kant, a pure concept of space warrants and constrains intuitions of finite regions of space.
Article Jardine, Nick; Frasca-Spada, Marina (2003) Editorial Preface. Studies in History and Philosophy of Science (p. 1).
Article
De Pierris, Graciela;
(2012)
Hume on Space, Geometry, and Diagrammatic Reasoning
Article
Pourciau, Bruce;
(2000)
Intuitionism as a (failed) Kuhnian revolution in mathematics
Book
Atten, Mark Sebastiaan Paul Rogier van;
(2004)
On Brouwer
Thesis
Ye, Feng;
(2000)
Strict Constructivism and the Philosophy of Mathematics
Article
Jessica J. Williams;
(2018)
Kant on the Original Synthesis of Understanding and Sensibility
Chapter
Michael Friedman;
(2015)
Kant on Geometry and Experience
Article
Andrea Reichenberger;
(2021)
Émilie Du Châtelet on Space and Time
Article
Hon, Giora;
(2005)
Kant vs. Legendre on Symmetry: Mirror Images in Philosophy and Mathematics
Book
Vinci, Thomas C.;
(2015)
Space, Geometry, and Kant's Transcendental Deduction of the Categories
Chapter
Friedman, Michael;
(2012)
Newton and Kant on Absolute Space: From Theology to Transcendental Philosophy
Article
Liesbet De Kock;
(2016)
Helmholtz's Kant Revisited (once More). the All-Pervasive Nature of Helmholtz's Struggle with Kant's Anschauung
Article
MacDougall, Margaret;
(2010)
Poincaréan Intuition Revisited: What Can We Learn from Kant and Parsons?
Article
Cassou-Noguès, Pierre;
(2006)
Signs, Figures and Time: Cavaillès on “Intuition” in Mathematics
Article
Domski, Mary;
(2013)
Kant and Newton on the a priori Necessity of Geometry
Article
Giovanelli, Marco;
(2010)
Urbild und Abbild: Leibniz, Kant und Hausdorff über das Raumproblem
Chapter
Gerhard Heinzmann;
(2016)
Kant et l'intuition épistémique
Book
Parsons, Charles;
(2012)
From Kant to Husserl: Selected Essays
Article
Sutherland, Daniel;
(2005)
Kant on Fundamental Geometrical Relations
Chapter
Sutherland, Daniel;
(2010)
Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early Kant
Chapter
Shabel, Lisa;
(2006)
Kant's Philosophy of Mathematics
Be the first to comment!