Show
295 citations
related to Number theory; number concept

Show
295 citations
related to Number theory; number concept as a subject or category

Description Term used during the period 2002-present

Permalink

data.isiscb.org/p/isis/authority/CBA000114443

Updated timeline is loading. Please wait. The server may be processing several jobs...

Article
**Richard Arthur; David Rabouin**
(2024)

On the Unviability of Interpreting Leibniz's Infinitesimals through Non-standard analysis.
*Historia Mathematica*
(pp. 26-42).
(/p/isis/citation/CBB881063867/)

Article
**Eric Vandendriessche**
(2022)

The concrete numbers of “primitive” societies: A historiographical approach.
*Historia Mathematica*
(pp. 12-34).
(/p/isis/citation/CBB201980517/)

Article
**Christine Proust**
(2022)

The sexagesimal place-value notation and abstract numbers in mathematical cuneiform texts.
*Historia Mathematica*
(pp. 54-70).
(/p/isis/citation/CBB388966363/)

Article
**Xiaofei Wang**
(2022)

How Jean-Baptiste Delambre read ancient Greek arithmetic on the basis of the arithmetic of “complex numbers” at the turn of the 19th century.
*Historia Mathematica*
(pp. 146-163).
(/p/isis/citation/CBB809964800/)

Article
**Christine Chambris; Jana Visnovska**
(2022)

On the history of units in French elementary school arithmetic: The case of proportionality.
*Historia Mathematica*
(pp. 99-118).
(/p/isis/citation/CBB935801822/)

Article
**Miguel Valério; Silvia Ferrara**
(2022)

Numeracy at the dawn of writing: Mesopotamia and beyond.
*Historia Mathematica*
(pp. 35-53).
(/p/isis/citation/CBB694933661/)

Article
**Márcia R. Cerioli; Hugo Nobrega; Guilherme Silveira; et al.**
(2022)

On the (In)Dependence of the Peano Axioms for Natural Numbers.
*History and Philosophy of Logic*
(pp. 51-69).
(/p/isis/citation/CBB173126247/)

Article
**Mark Textor**
(2021)

Saying Something about a Concept: Frege on Statements of Number.
*History and Philosophy of Logic*
(pp. 60-71).
(/p/isis/citation/CBB227044624/)

Article
**Amanda Paxton**
(2021)

The Hard Math of Beauty: Gerard Manley Hopkins and "Spectral Numbers".
*Victorian Studies*
(pp. 246-270).
(/p/isis/citation/CBB150662150/)

Article
**Emily Katz**
(2021)

What Numbers Could Not Be (for Aristotle).
*Journal of the History of Philosophy*
(pp. 193-219).
(/p/isis/citation/CBB693325107/)

Article
**Thierry Coquand; Stefan Neuwirth**
(2020)

Lorenzen's Proof of Consistency for Elementary Number Theory.
*History and Philosophy of Logic*
(pp. 281-290).
(/p/isis/citation/CBB167711373/)

Article
**Andrea Bréard; Constance A. Cook**
(2020)

Cracking bones and numbers: solving the enigma of numerical sequences on ancient Chinese artifacts.
*Archive for History of Exact Sciences*
(pp. 313-343).
(/p/isis/citation/CBB870667256/)

Article
**Zhao Fan**
(2020)

Hobson’s Conception of Definable Numbers.
*History and Philosophy of Logic*
(pp. 128-139).
(/p/isis/citation/CBB837308592/)

Article
**Elías Fuentes Guillén; Carmen Martínez Adame**
(2020)

The Notion of Variable Quantities ω in Bolzano's Early Works.
*Historia Mathematica*
(pp. 25-49).
(/p/isis/citation/CBB432034974/)

Article
**Erika Luciano; Elena Scalambro; Lea Terracini**
(2020)

Le lezioni di teoria dei numeri di Guido Fubini (1916-1917).
*Bollettino di Storia delle Scienze Matematiche*
(pp. 367-394).
(/p/isis/citation/CBB746462227/)

Book
**Paolo D'Isanto**
(2020)

La funzione zeta di Riemann in fisica.
(/p/isis/citation/CBB753434330/)

Article
**Paolo Rossini**
(2020)

Changing conceptions of mathematics and infinity in Giordano Bruno’s vernacular and Latin works.
*Science in Context*
(pp. 251-271).
(/p/isis/citation/CBB044626758/)

Chapter
**Jenny Boucard; Eva Kaufholz-Soldat; Nicola M.R. Oswald**
(2020)

Arithmetic and Memorial Practices by and Around Sophie Germain in the 19th Century.
In: *Against All Odds: Women’s Ways to Mathematical Research Since 1800*
(pp. 185-230).
(/p/isis/citation/CBB412993885/)

Book
**Richard Dedekind; Heinrich Weber**
(2019)

Theorie Des Fonctions Algebriques d'Une Variable.
(/p/isis/citation/CBB160173996/)

Article
**Mariano Galvagno; Gaston Giribet**
(2019)

Luis Santaló and classical field theory.
*European Physical Journal H*
(pp. 381-389).
(/p/isis/citation/CBB169091282/)

Be the first to comment!