Numerico, Teresa (Author)
Big data e algoritmi costruiscono correlazioni, regolarità e quantificazioni per proporre interpretazioni dei fenomeni sociali in base ad automatismi matematici. Tuttavia è un’illusione pensare che una comprensione automatica di abitudini ed eventi possa essere oggettiva e neutrale. Le tecnologie dell’intelligenza artificiale ambiscono a definire ciò che è stato e ad anticipare il futuro, ma sono state inventate e sviluppate da esseri umani, e ne conservano perciò il genio, l’instabilità, i pregiudizi, spesso anche l’arroganza. Affidarsi ad algoritmi per prendere decisioni in contesti incerti come quelli della vita reale, dove non è possibile determinare gli obiettivi univocamente, consente a chi definisce i criteri di farlo all’ombra del dispositivo tecnico, senza doversi assumere responsabilità, anche a rischio di esiti iniqui. È quindi necessario chiedere giustizia su dati e algoritmi: chi è oggetto di processi decisionali automatici deve ottenere spiegazioni esplicite e condivise per le scelte, pubbliche o private che siano. [Abstract translated by Google Translate: This is the abstract in English… Big data and algorithms build correlations, regularities and quantifications to propose interpretations of social phenomena based on mathematical automatisms. However, it is an illusion to think that an automatic understanding of habits and events can be objective and neutral. Artificial intelligence technologies aim to define what has been and to anticipate the future, but they were invented and developed by human beings, and therefore retain their genius, instability, prejudices - and, often, even their arrogance. Relying on algorithms to make decisions in uncertain contexts such as those of real life, where it is not possible to determine the objectives univocally, allows those who define the criteria to do so "in the shadow" of the technical device, without taking responsibility, even at the risk of unfair outcomes. It is therefore necessary to ask for justice on data and algorithms: those who are the object of automatic decision-making processes must obtain explicit and shared explanations for the choices, whether public or private.]
...More
Article
Peter M. Asaro;
(June 2019)
AI Ethics in Predictive Policing: From Models of Threat to an Ethics of Care
(/isis/citation/CBB655687648/)
Book
Taina Bucher;
(2018)
If ... then: algorithmic power and politics
(/isis/citation/CBB014118736/)
Article
Tal Zarsky;
(January 2016)
The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision Making
(/isis/citation/CBB775587512/)
Book
Viktor Mayer-Schönberger;
Kenneth Cukier;
(2013)
Big Data: A Revolution that Will Transform how We Live, Work, and Think
(/isis/citation/CBB394194579/)
Article
Włodzimierz Gogołek;
(2017)
Refining Big Data
(/isis/citation/CBB158654943/)
Book
John Cheney-Lippold;
(2017)
We are data : Algorithms and the making of our digital selves
(/isis/citation/CBB593815757/)
Article
Leandro de Brasi;
(March 2019)
Democratic Governance of Information Technologies: The Need for Citizen Competence
(/isis/citation/CBB632904072/)
Article
Maggini, Golfo;
(2013)
Bodily Presence, Absence, and their Ethical Challenges: Towards a Phenomenological Ethics of the Virtual
(/isis/citation/CBB001201745/)
Article
Watts, Duncan J.;
(Winter 2013)
Computational Social Science: Exciting Progress and Future Directions
(/isis/citation/CBB953214411/)
Article
Hallam Stevens;
(2017)
A Feeling for the Algorithm: Working Knowledge and Big Data in Biology
(/isis/citation/CBB599481425/)
Book
Ethem Alpaydın;
(2021)
Machine Learning
(/isis/citation/CBB513990166/)
Article
Alison Cool;
(August 2019)
Impossible, unknowable, accountable: Dramas and dilemmas of data law
(/isis/citation/CBB709306750/)
Article
Willcox, Karen E.;
Klopfer, Eric;
Miller, Haynes R.;
(Fall 2016)
Open Educational Resources: Past, Present, and Future
(/isis/citation/CBB568788184/)
Article
Krishna Sood;
(June 2018)
The Ultimate Black Box: The Thorny Issue of Programming Moral Standards in Machines
(/isis/citation/CBB475729971/)
Article
Peter Andras;
Lukas Esterle;
Michael Guckert;
The Anh Han;
Peter R. Lewis;
Kristina Milanovic;
Terry Payne;
Cedric Perret;
Jeremy Pitt;
Simon T. Powers;
Neil Urquhart;
Simon Wells;
(December 2018)
Trusting Intelligent Machines: Deepening Trust Within Socio-Technical Systems
(/isis/citation/CBB573643849/)
Article
Jaigris Hodson;
(March 2019)
Don't Trust #CDNMedia: Twitter Posts From Eight Canadian Communities During #elxn42
(/isis/citation/CBB640345135/)
Article
Alexandra Luccioni;
Yoshua Bengio;
(March 2020)
On the Morality of Artificial Intelligence [Commentary]
(/isis/citation/CBB318875873/)
Essay Review
Martha Poon;
(November 2016)
Review Essay: Corporate Capitalism and the Growing Power of Big Data
(/isis/citation/CBB247254530/)
Article
Dodge, Hiroko H.;
Estrin, Deborah;
(Spring 2019)
Making Sense of Aging with Data Big and Small
(/isis/citation/CBB005586875/)
Article
Tien, James M.;
(Winter 2014)
Overview of Big Data: A US Perspective
(/isis/citation/CBB504574424/)
Be the first to comment!