During the first half of the 20th century the Danish geometer Johannes Hjelmslev developed what he called a geometry of reality. It was presented as an alternative to the idealized Euclidean paradigm that had recently been completed by Hilbert. Hjelmslev argued that his geometry of reality was superior to the Euclidean geometry both didactically, scientifically and in practice: Didactically, because it was closer to experience and intuition, in practice because it was in accordance with the real geometrical drawing practice of the engineer, and scientifically because it was based on a smaller axiomatic basis than Hilbertian Euclidean geometry but still included the important theorems of ordinary geometry. In this paper, I shall primarily analyze the scientific aspect of Hjelmslev's new approach to geometry that gave rise to the so-called Hjelmslev (incidence) geometry or ring geometry. I den første halvdel af 1900-tallet udviklede den danske matematiker Johannes Hjelmslev en såkaldt virkelighedsgeometri. Den var et alternativ til det idealiserede euklidiske paradigme, som kort forinden var blevet perfektioneret af Hilbert. Hjelmslev hævdede at virkelighedsgeometrien var bedre end den euklidiske både didaktisk, videnskabeligt og i praksis: Didaktisk, fordi den var tættere på erfaring og intuition, i praksis, fordi den lå tættere på ingeniørens praktiske geometriske konstruktioner, og videnskabeligt, fordi den byggede på et smallere aksiomatisk fundament end Hilberts, men stadig indeholdt de vigtigste sætninger i den almindelige geometri. I denne artikel vil jeg først og fremmest diskutere de videnskabelige aspekter af Hjelmslevs nye geometri, som gav anledning til den såkaldte Hjelmslev-geometri eller ring-geometri.
...More
Book
Gandon, Sébastien;
(2012)
Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics
(/isis/citation/CBB001201203/)
Chapter
Jeremy Gray;
(2015)
A Note on Lines and Planes in Euclid’s Geometry
(/isis/citation/CBB826243941/)
Article
Jemma Lorenat;
(2022)
An Okapi Hypothesis: Non-Euclidean Geometry and the Professional Expert in American Mathematics
(/isis/citation/CBB066890396/)
Article
Kjeldsen, Tinne Hoff;
Carter, Jessica;
(2012)
The Growth of Mathematical Knowledge---Introduction of Convex Bodies
(/isis/citation/CBB001221693/)
Chapter
Krämer, Sybille;
(2008)
The Productivity of Blanks: On the Mathematical Zero and the Vanishing Point in Central Perspective. Remarks on the Convergences between Science and Art in the Early Modern Period
(/isis/citation/CBB000831254/)
Article
Xiaofei Wang;
(2022)
How Jean-Baptiste Delambre read ancient Greek arithmetic on the basis of the arithmetic of “complex numbers” at the turn of the 19th century
(/isis/citation/CBB809964800/)
Book
Tasic, Vladimir;
(2001)
Mathematics and the Roots of Postmodern Thought
(/isis/citation/CBB000101675/)
Article
Fog, David;
(1985)
Johannes Hjelmselv
(/isis/citation/CBB000058677/)
Article
Sauer, Tilman;
(2006)
Field Equations in Teleparallel Space-Time: Einstein's Fernparallelismus Approach Toward Unified Field Theory
(/isis/citation/CBB000771355/)
Article
Yan, Chen-guang;
Deng, Ming-li;
(2009)
Riemann's Idea of Geometry and its Impact on the Theory of Relativity
(/isis/citation/CBB000952285/)
Article
Alberto Cogliati;
(2016)
Schouten, Levi-Civita and the Notion of Parallelism in Riemannian Geometry
(/isis/citation/CBB798870530/)
Article
Cerroni, Cinzia;
(2007)
The Contributions of Hilbert and Dehn to Non-Archimedean Geometries and Their Impact on the Italian School
(/isis/citation/CBB000930656/)
Article
Demirtas, Inanç Akdenizci;
(2005)
Salih Zeki Introduces Lobachevsky's Geometry: Two Conferences in 1915
(/isis/citation/CBB000931405/)
Article
Dölen, Emre;
(2005)
Salih Zeki and the Darülfünun
(/isis/citation/CBB000931408/)
Article
Samuel J. M. M. Alberti;
(2018)
Drawing Damaged Bodies: British Medical Art in the Early Twentieth Century
(/isis/citation/CBB102567071/)
Chapter
Walter, Christine;
(2008)
Towards a More “Scientific” Archaeological Tool: The Accurate Drawing of Greek Vases between the End of the Nineteenth and the First Half of the Twentieth Centuries
(/isis/citation/CBB000952387/)
Article
Berner, Boel;
(2007)
Rationalizing Technical Work: Visions and Realities of the Systematic Drawing Office in Sweden, 1890--1940
(/isis/citation/CBB000700501/)
Article
Tilman Sauer;
Tobias Schütz;
(2021)
Einstein on involutions in projective geometry
(/isis/citation/CBB111629243/)
Article
Nikolay Milkov;
(2016)
Walter Dubislav’s Philosophy of Science and Mathematics
(/isis/citation/CBB827471050/)
Article
Mark Textor;
(2021)
Saying Something about a Concept: Frege on Statements of Number
(/isis/citation/CBB227044624/)
Be the first to comment!