Benci, Vieri (Author)
Freguglia, Paolo (Author)
Questo libro propone un’analisi dell’infinito in matematica sia dal punto di vista storico che da quello teorico. Relativamente al primo, vengono esposti alcuni fondamentali risultati classici che riguardano i numeri e le grandezze, soffermandosi in particolare sull'incommensurabilità – che è tra i temi più significativi della storia della matematica – e sviluppando poi la trattazione sino a tempi a noi più vicini. Dal punto di vista teorico, invece, vengono illustrati risultati e teorie attuali relativi alla matematica non archimedea, cioè all'uso dei numeri infiniti e infinitesimi. [Abstract translated by Google Translate: This is the abstract in English… This book offers an analysis of infinity in mathematics both from a historical and a theoretical point of view. With respect to the former, some fundamental classical results concerning numbers and sizes are exposed, focusing in particular on the incommensurability - which is among the most significant themes in the history of mathematics - and then developing the discussion up to our closest times. From the theoretical point of view, instead, present results and theories related to non-Archimedean mathematics, i.e. to the use of infinite and infinitesimal numbers, are illustrated.]
...More
Article
Mormann, Thomas;
Katz, Mikhail;
(2013)
Infinitesimals as an Issue of Neo-Kantian Philosophy of Science
(/isis/citation/CBB001320796/)
Article
Magnani, Lorenzo;
Dossena, Riccardo;
(2005)
Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics
(/isis/citation/CBB000640123/)
Article
G. Donald Allen;
(2014)
The Remarkable Number “1”
(/isis/citation/CBB146012101/)
Book
Claudio Ternullo;
Vincenzo Fano;
(2021)
L'infinito. Filosofia, matematica, fisica
(/isis/citation/CBB363375072/)
Chapter
Paolo Zellini;
(2018)
La crescita dei numeri nel pensiero antico e moderno
(/isis/citation/CBB053441886/)
Article
Harmer, Adam;
(2014)
Leibniz on Infinite Numbers, Infinite Wholes, and Composite Substances
(/isis/citation/CBB001201140/)
Chapter
Breger, Herbert;
(2008)
Natural Numbers and Infinite Cardinal Numbers. Paradigm Change in Mathematics
(/isis/citation/CBB000950180/)
Book
Davide Gullotto;
(2023)
La Repubblica dei Matematici. Storia dell’analisi matematica nell’età di Euler e Leibniz
(/isis/citation/CBB269641386/)
Article
Roshdi Rashed;
(2013)
Descartes et l'infiniment petit
(/isis/citation/CBB698670085/)
Article
Błaszczyk, Piotr;
Katz, Mikhail G.;
Sherry, David;
(2013)
Ten Misconceptions from the History of Analysis and Their Debunking
(/isis/citation/CBB001252715/)
Article
Español González, Luis;
(2004)
La Dialéctica del Cálculo Infinitesimal
(/isis/citation/CBB000530021/)
Article
Dauben, Joseph W.;
(2004)
Mathematics and Ideology: The Politics of Infinitesimals
(/isis/citation/CBB000530020/)
Article
Arthur, Richard T. W.;
(2013)
Leibniz's Syncategorematic Infinitesimals
(/isis/citation/CBB001211764/)
Article
Alexander, Amir R.;
(2001)
Exploration Mathematics: The Rhetoric of Discovery and the Rise of Infinitesimal Methods
(/isis/citation/CBB000100520/)
Article
Sweeney, David John;
(2014)
Chunk and Permeate: The Infinitesimals of Isaac Newton
(/isis/citation/CBB001213925/)
Article
Jacques Bair;
Piotr Błaszczyk;
Robert Ely;
Mikhail G. Katz;
Karl Kuhlemann;
(2021)
Procedures of Leibnizian infinitesimal calculus: an account in three modern frameworks
(/isis/citation/CBB016796401/)
Article
Kanovei, Vladimir;
Katz, Mikhail G.;
Mormann, Thomas;
(2013)
Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics
(/isis/citation/CBB001320860/)
Book
Goldenbaum, Ursula;
Jesseph, Douglas;
(2008)
Infinitesimal Differences: Controversies between Leibniz and His Contemporaries
(/isis/citation/CBB000950297/)
Book
Paolo Zellini;
(1999)
Gnomon. Una indagine sul numero
(/isis/citation/CBB253354203/)
Book
Paolo Zellini;
(2010)
Numero e logos
(/isis/citation/CBB843348217/)
Be the first to comment!