Article ID: CBB388966363

The sexagesimal place-value notation and abstract numbers in mathematical cuneiform texts (2022)

unapi

The discovery at the end of the 19th century of the mathematical cuneiform texts posed to historians the question of the nature of the numbers used in them, i.e. that of the sexagesimal place-value notation. This notation, although familiar to us today since it is the one we use to measure time, has, in the cuneiform texts, specificities which still raise challenges of interpretation. One of these specificities is the fact that the cuneiform writing does not indicate the order of magnitude of the numbers (for example, 1, 60, 1/60 or any other power of 60 are written in the same way). This article outlines the way in which historians of the late 19th and early 20th centuries interpreted this specificity. The focus here is on the interpretation proposed by the Assyriologist François Thureau-Dangin, who in 1930 considered numbers in sexagesimal place-value notation as “abstract numbers”, as opposed to “concrete numbers”. Résumé La découverte à la fin du 19e siècle des premières tablettes mathématiques cunéiformes a posé aux historiens la question de la nature des nombres qui y étaient utilisés, c'est-à-dire celle de la notation sexagésimale positionnelle. Cette notation, quoique familière aujourd'hui puisque c'est celle que nous utilisons pour la mesure du temps, revêt dans les textes cunéiformes des spécificités qui soulèvent encore aujourd'hui des défis d'interprétation. Une de ces spécificités est le fait que l'écriture cunéiforme n'indique pas l'ordre de grandeur des nombres (par exemple, 1, 60, 1/60 ou toute autre puissance de 60 s'écrivent de la même façon). Cet article retrace la façon dont les historiens de la fin du 19e siècle et du début du 20e siècle ont interprété cette spécificité. L'accent est mis ici sur l'interprétation de François Thureau-Dangin, qui, en 1930, considérait les nombres en notation sexagésimale positionnelle comme des « nombres abstraits », qu'il opposait aux « nombres concrets ».

...More
Citation URI
http://data.isiscb.org/isis/citation/CBB388966363/

Similar Citations

Article Eric Vandendriessche; (2022)
The concrete numbers of “primitive” societies: A historiographical approach (/isis/citation/CBB201980517/) unapi

Book Gray, Jeremy; Parshall, Karen Hunger; (2007)
Episodes in the History of Modern Algebra (1800--1950) (/isis/citation/CBB000774194/) unapi

Article Márcia R. Cerioli; Hugo Nobrega; Guilherme Silveira; Petrucio Viana; (2022)
On the (In)Dependence of the Peano Axioms for Natural Numbers (/isis/citation/CBB173126247/) unapi

Chapter Béatrice André-Salvini; (2016)
François Thureau-Dangin and Cuneiform Mathematics (/isis/citation/CBB293839597/) unapi

Article Alberts, Gerard; Beckers, Danny; (2013)
Tussen Tannery en Klein: polariteit in de geschiedschrijving van wiskunde in Belgiē en Nederland (/isis/citation/CBB001321084/) unapi

Article Korhonen, Anssi; (2012)
Logic as a Science and Logic as a Theory: Remarks on Frege, Russell and the Logocentric Predicament (/isis/citation/CBB001214125/) unapi

Chapter Teije de Jong; (2016)
Babylonian Astronomy 1880–1950: The Players and the Field (/isis/citation/CBB194532905/) unapi

Article Burna, Bob; (2013)
Root 2: The Early Evidence and Later Conjectures (/isis/citation/CBB001213289/) unapi

Article Hollings, Christopher; (2014)
Investigating a Claim for Russian Priority in the Abstract Definition of a Ring (/isis/citation/CBB001420039/) unapi

Article Corry, Leo; Schappacher, Norbert; (2010)
Zionist Internationalism through Number Theory: Edmund Landau at the Opening of the Hebrew University in 1925 (/isis/citation/CBB001034624/) unapi

Article Yap, Audrey; (2011)
Gauss' Quadratic Reciprocity Theorem and Mathematical Fruitfulness (/isis/citation/CBB001024184/) unapi

Article Boniface, Jacqueline; Schappacher, Norbert; (2001)
“Sur le concept de nombre en mathématique”: Cours inédit de Leopold Kronecker à Berlin (1891) (/isis/citation/CBB000770907/) unapi

Article Michelacci, Giacomo; (2005)
Le lettere di Charles Hermite a Angelo Genocchi (1868--1887) (/isis/citation/CBB000900131/) unapi

Book Paolo D'Isanto; (2020)
La funzione zeta di Riemann in fisica (/isis/citation/CBB753434330/) unapi

Book Richard Dedekind; Heinrich Weber; (2019)
Theorie Des Fonctions Algebriques d'Une Variable (/isis/citation/CBB160173996/) unapi

Book Goldstein, Catherine; Schappacher, Norbert; Schwermer, Joachim; (2007)
The Shaping of Arithmetic after C. F. Gauss's Disquisitiones Arithmeticae (/isis/citation/CBB001035076/) unapi

Article Laubenbacher, Reinhard; Pengelley, David; (2010)
“Voici ce que j'ai trouvé”: Sophie Germain's Grand Plan to Prove Fermat's Last Theorem (/isis/citation/CBB001022155/) unapi

Article Boucard, Jenny; (2011)
Louis Poinsot et la théorie de l'ordre: un chaînon manquant entre Gauss et Galois? (/isis/citation/CBB001034693/) unapi

Authors & Contributors
Schappacher, Norbert
Goldstein, Catherine
Boniface, Jacqueline
Gray, Jeremy
Parshall, Karen V. Hunger
Michelacci, Giacomo
Journals
Revue d'Histoire des Mathématiques
Historia Mathematica
British Society for the History of Mathematics Bulletin
Bollettino di Storia delle Scienze Matematiche
Revue d'Histoire des Sciences
Studies in History and Philosophy of Science
Publishers
American Mathematical Society
Springer
Librarie Philosophique J. Vrin
Aracne
Concepts
Mathematics
Number theory; number concept
Historiography
Algebraic geometry
Cuneiform inscriptions
Arithmetic
People
Kronecker, Leopold
Gauss, Carl Friedrich
Gregory, Duncan Farquharson
Minkowski, Hermann
Dickson, Leonard Eugene
Grothendieck, Alexandre
Time Periods
19th century
20th century, early
18th century
Ancient
20th century
Places
Ancient Near and Middle East: Egypt, Sumer, Babylon, Assyria, Mesopotamia, Palestine, Persia
France
Israel
Greece
Russia
Ukraine
Institutions
University of Chicago
Hebrew University of Jerusalem
Comments

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment