Article ID: CBB210493760

Representing the World with Inconsistent Mathematics (2020)

unapi

According to standard accounts of mathematical representations of physical phenomena, positing structure-preserving mappings between a physical target system and the structure(s) picked out by a mathematical theory is essential to such representations. In this paper, I argue that these accounts fail to give a satisfactory explanation of scientific representations that make use of inconsistent mathematical theories and present an alternative, robustly inferential account of mathematical representation that provides not just a better explanation of applications of inconsistent mathematics, but also a compelling explanation of mathematical representations of physical phenomena in general. 1.  Inconsistent Mathematics and the Problem of Representation2.  The Early Calculus3.  Mapping Accounts and the Early Calculus3.1.  Partial structures3.2.  Inconsistent structures3.3.  Related total consistent structures4.  A Robustly Inferential Account of the Early Calculus in Applications 4.1.  The robustly inferential conception of mathematical representation4.2.  The robustly inferential conception and inconsistent mathematics4.3.  The robustly inferential conception and mapping accounts5.  Beyond Inconsistent Mathematics

...More
Citation URI
https://data.isiscb.org/isis/citation/CBB210493760/

Similar Citations

Book Schlote, Karl-Heinz; (2002)
Chronologie der Naturwissenschaften: Der Weg der Mathematik und der Naturwissenschaften von den Anfängen in das 21. Jahrhundert

Book Omnès, Roland; (2005)
Converging Realities: Toward a Common Philosophy of Physics and Mathematics

Book Grabiner, Judith V.; (2010)
A Historian Looks Back: The Calculus as Algebra and Selected Writings

Book Cirino, Raffaele; (2006)
Dal movimento alla forza: Leibniz, l'infinitesimo tra logica e metafisica

Article Colin McCullough-Benner; (2022)
Applying unrigorous mathematics: Heaviside's operational calculus

Article J. L. Usó-Doménech; J. A. Nescolarde-Selva; Hugh Gash; (2020)
Ontological Argument and Infinity in Spinoza’s Thought

Article Luciano Boi; (2019)
Some Mathematical, Epistemological, and Historical Reflections on the Relationship Between Geometry and Reality, Space–Time Theory and the Geometrization of Theoretical Physics, from Riemann to Weyl and Beyond

Article Gelfert, Axel; (2013)
Applicability, Indispensability, and Underdetermination: Puzzling Over Wigner's “Unreasonable Effectiveness of Mathematics”

Article Gramelsberger, Gabriele; (2011)
What Do Numerical (Climate) Models Really Represent?

Article Angelika Bönker-Vallon; (2012)
Mathematisches Denken bei Giordano Bruno: Wege der Interpretation

Article Ofer Gal; Cindy Hodoba Eric; (2019)
Between Kepler and Newton: Hooke’s ‘principles of congruity and incongruity’ and the naturalization of mathematics

Chapter Porter, Theodore M.; (2002)
Models, Analogies, and Statistical Reason, 1760-1900

Book Folkerts, Menso; Knobloch, Eberhard; Reich, Karin; (2001)
Maß, Zahl, und Gewicht: Mathematik als Schlüssel zu Weltverständnis und Weltbeherrschung [Ausstellung im Zeughaus vom 15. Juli bis 24. September 1989; Ausstellung in der Bibliotheca Augusta vom 28. Juli bis 28. Oktober 2001]

Thesis Domski, Mary; (2003)
Geometry and Experimental Method in Locke, Newton and Kant

Article Kate Hindle; (2024)
D'Arcy Thompson on flight

Chapter Guicciardini, Niccolò; (2002)
Geometry, the Calculus and the Use of Limits in Newton's Principia

Book Vieri Benci; Paolo Freguglia; (2019)
La matematica e l'infinito: Storia e attualità di un problema

Book Dalen, Dirk van; (2013)
L. E. J. Brouwer: Topologist, Intuitionist, Philosopher---How Mathematics is Rooted in Life

Chapter Gabriele Lolli; (2019)
Matematica come narrazione

Chapter Pulte, Helmut; (2001)
Order of Nature and Orders of Science: On the Material Philosophy of Nature and Its Changing Concepts of Science from Newton and Euler to Lagrange and Kant

Authors & Contributors
Benci, Vieri
Boi, Luciano
Bönker-Vallon, Angelika
Cirino, Raffaele
Dalen, Dirk van
Domski, Mary
Journals
Foundations of Science
Studies in History and Philosophy of Science
Annals of Science: The History of Science and Technology
Bruniana & Campanelliana: Ricerche Filosofiche e Materiali Storico-testuali
Science and Education
British Journal for the History of Mathematics
Publishers
Mathematical Association of America
Indiana University
Carocci Editore
Harrassowitz in Kommission
Princeton University Press
Rubbettino
Concepts
Mathematics and its relationship to nature
Mathematics and its relationship to science
Mathematics
Philosophy of mathematics
Philosophy of science
Calculus
People
Newton, Isaac
Kant, Immanuel
Brouwer, Luitzen E. J.
Bruno, Giordano
Euler, Leonhard
Heaviside, Oliver
Time Periods
17th century
18th century
20th century, early
20th century, late
16th century
19th century
Places
Italy
England
Comments

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment