Thomas William Barrett (Author)
The standard view is that the Lagrangian and Hamiltonian formulations of classical mechanics are theoretically equivalent. Jill North ([2009]), however, argues that they are not. In particular, she argues that the state-space of Hamiltonian mechanics has less structure than the state-space of Lagrangian mechanics. I will isolate two arguments that North puts forward for this conclusion and argue that neither yet succeeds. 1 Introduction 2 Hamiltonian State-space Has less Structure than Lagrangian State-space 2.1 Lagrangian state-space is metrical 2.2 Hamiltonian state-space is symplectic 2.3 Metric > symplectic 3 Hamiltonian State-space Does Not Have Less Structure than Lagrangian State-space 3.1 Lagrangian state-space has less than metric structure 3.1.1 A potential worry 3.1.2 General Lagrangians 3.2 Hamiltonian state-space (often) has more than symplectic structure 3.2.1 A dual structure on the Hamiltonian state-space 3.2.2 Simple Hamiltonians 3.3 Comparing Lagrangian and Hamiltonian structures 3.3.1 Counting mathematical structure 3.3.2 Symplectic and metric structure are incomparable 4 An Alternative Argument for LS 4.1 The argument for P3* 4.2 Symplectic manifold vs. tangent bundle structure 4.3 Trying to patch up the argument for P3* 5 Interpreting Mathematical Structure 5.1 State-space realism 5.2 Model isomorphism and theoretical equivalence 6 Conclusion
...More
Article
Gallavotti, Giovanni;
(2013)
Aspects of Lagrange's Mechanics and their Legacy
Article
Craig Fraser;
Michiyo Nakane;
(2023)
Canonical transformations from Jacobi to Whittaker
Chapter
Antonino Drago;
(2009)
Lagrange's Arguing in Mecanique Analytique
Book
Capecchi, Danilo;
Drago, Antonino;
(2005)
Lagrange e la storia della meccanica
Thesis
Hepburn, Brian S.;
(2007)
Equilibrium and Explanation in 18th-Century Mechanics
Article
Nakane, Michiyo;
(1991)
The role of the three-body problem in W.R. Hamilton's construction of the characteristic function for mechanics
Book
Lagrange, Joseph Louis;
(1997)
Analytical mechanics. Translated from the Mécanique analytique, nouvelle édition of 1811. Translated and edited by Boissonnade, Auguste and Vagliente, Victor N.
Article
Pulte, Helmut;
(1998)
Jacobi's criticism of Lagrange: The changing role of mathematics in the foundations of classical mechanics
Article
O'Connor, Thomas C.;
(2014)
Daedalus in Dublin: A Physicist's Labyrinth
Article
Nakane, Michiyo;
Fraser, Craig G.;
(2002)
The Early History of Hamilton-Jacobi Dynamics, 1834--1837
Article
Frisch, Uriel;
Villone, Barbara;
(2014)
Cauchy's Almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow
Book
(1990)
La “Mécanique analytique” de Lagrange et son héritage I: Colloque, Paris, 27-29 septembre 1988
Book
Pulte, Helmut;
(1989)
Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationalen Mechanik: Eine Untersuchung zur Grundlegungsproblematik bei Leonhard Euler, Pierre Louis Moreau de Maupertuis und Joseph Louis Lagrange
Article
Christoph Lehner;
Helge Wendt;
(2017)
Mechanics in the Querelle des Anciens et des Modernes
Book
Marco Panza;
(2021)
Modes de l’analyse et formes de la géométrie
Article
Fraser, Craig;
(1983)
J. L. Lagrange's early contributions to the principles and methods of mechanics
Book
Barroso Filho, Wilton;
(1994)
La mécanique de Lagrange: Principes et méthodes
Article
Galletto, D.;
(1991)
Lagrange e le origini della Mécanique analytique
Chapter
Barroso-Filho, Wilton;
Comte, Claude;
(1988)
La formalisation de la dynamique par Lagrange
Article
Galletto, Dionigi;
(1991)
Lagrange e la Mécanique analytique
Be the first to comment!