Article ID: CBB188856810

On the Structure of Classical Mechanics (2015)

unapi

The standard view is that the Lagrangian and Hamiltonian formulations of classical mechanics are theoretically equivalent. Jill North ([2009]), however, argues that they are not. In particular, she argues that the state-space of Hamiltonian mechanics has less structure than the state-space of Lagrangian mechanics. I will isolate two arguments that North puts forward for this conclusion and argue that neither yet succeeds. 1 Introduction 2 Hamiltonian State-space Has less Structure than Lagrangian State-space 2.1 Lagrangian state-space is metrical 2.2 Hamiltonian state-space is symplectic 2.3 Metric > symplectic 3 Hamiltonian State-space Does Not Have Less Structure than Lagrangian State-space 3.1 Lagrangian state-space has less than metric structure 3.1.1 A potential worry 3.1.2 General Lagrangians 3.2 Hamiltonian state-space (often) has more than symplectic structure 3.2.1 A dual structure on the Hamiltonian state-space 3.2.2 Simple Hamiltonians 3.3 Comparing Lagrangian and Hamiltonian structures 3.3.1 Counting mathematical structure 3.3.2 Symplectic and metric structure are incomparable 4 An Alternative Argument for LS 4.1 The argument for P3* 4.2 Symplectic manifold vs. tangent bundle structure 4.3 Trying to patch up the argument for P3* 5 Interpreting Mathematical Structure 5.1 State-space realism 5.2 Model isomorphism and theoretical equivalence 6 Conclusion

...More
Citation URI
https://data.isiscb.org/isis/citation/CBB188856810/

Similar Citations

Article Gallavotti, Giovanni; (2013)
Aspects of Lagrange's Mechanics and their Legacy

Article Craig Fraser; Michiyo Nakane; (2023)
Canonical transformations from Jacobi to Whittaker

Chapter Antonino Drago; (2009)
Lagrange's Arguing in Mecanique Analytique

Book Capecchi, Danilo; Drago, Antonino; (2005)
Lagrange e la storia della meccanica

Thesis Hepburn, Brian S.; (2007)
Equilibrium and Explanation in 18th-Century Mechanics

Article Nakane, Michiyo; (1991)
The role of the three-body problem in W.R. Hamilton's construction of the characteristic function for mechanics

Book Lagrange, Joseph Louis; (1997)
Analytical mechanics. Translated from the Mécanique analytique, nouvelle édition of 1811. Translated and edited by Boissonnade, Auguste and Vagliente, Victor N.

Article Pulte, Helmut; (1998)
Jacobi's criticism of Lagrange: The changing role of mathematics in the foundations of classical mechanics

Article O'Connor, Thomas C.; (2014)
Daedalus in Dublin: A Physicist's Labyrinth

Article Nakane, Michiyo; Fraser, Craig G.; (2002)
The Early History of Hamilton-Jacobi Dynamics, 1834--1837

Article Frisch, Uriel; Villone, Barbara; (2014)
Cauchy's Almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow

Book (1990)
La “Mécanique analytique” de Lagrange et son héritage I: Colloque, Paris, 27-29 septembre 1988

Book Pulte, Helmut; (1989)
Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationalen Mechanik: Eine Untersuchung zur Grundlegungsproblematik bei Leonhard Euler, Pierre Louis Moreau de Maupertuis und Joseph Louis Lagrange

Article Christoph Lehner; Helge Wendt; (2017)
Mechanics in the Querelle des Anciens et des Modernes

Book Marco Panza; (2021)
Modes de l’analyse et formes de la géométrie

Article Fraser, Craig; (1983)
J. L. Lagrange's early contributions to the principles and methods of mechanics

Book Barroso Filho, Wilton; (1994)
La mécanique de Lagrange: Principes et méthodes

Article Galletto, D.; (1991)
Lagrange e le origini della Mécanique analytique

Chapter Barroso-Filho, Wilton; Comte, Claude; (1988)
La formalisation de la dynamique par Lagrange

Article Galletto, Dionigi; (1991)
Lagrange e la Mécanique analytique

Authors & Contributors
Fraser, Craig G.
Nakane, Michiyo
Barroso Filho, Wilton
Drago, Antonino
Pulte, Helmut
Capecchi, Danilo
Journals
Archive for History of Exact Sciences
European Physical Journal H
Centaurus: International Magazine of the History of Mathematics, Science, and Technology
Giornale di Fisica
Historia Mathematica
Historia Scientiarum: International Journal of the History of Science Society of Japan
Publishers
Accademia delle Scienze di Torino
University of Pittsburgh
Guaraldi
Karthala
Kluwer Academic
Librairie Philosophique J. Vrin
Concepts
Mechanics
Physics
Mathematics
Celestial mechanics
Fluid mechanics
Mathematical physics
People
Lagrange, Joseph Louis
Hamilton, William Rowan
Euler, Leonhard
Jacobi, Karl Gustav Jakob
Newton, Isaac
Cauchy, Augustin Louis
Time Periods
18th century
19th century
20th century
20th century, early
Places
Europe
Dublin (Ireland)
Institutions
Académie des Sciences, Paris
Trinity College Dublin
Comments

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment