Cet article vise à restituer la doctrine du « signe du manifeste au caché » d'Abū Hāšim al-Ğubbāʾī (888-933). Il montre qu'Abū Hāšim a tendu à interpréter ce signe comme une inférence, dont il a reconnu deux types principaux : le type-1 (la « communauté de preuve », al-ištirāk fī al-dalāla) procède par déduction analytique de concepts en neutralisant les conditions de réalisation de ces derniers, c'est-à-dire leur soubassement ontologique. C'est, typiquement, la procédure la plus directement consonante avec l'ontologie modale d'Abū Hāšim. Le type-2 (la « communauté de cause », al-ištirāk fī al-ʿilla) exhibe un même rapport de causalité au plan du connu et au plan de l'inconnu et considère que la causalité au plan du connu est elle-même la cause de la causalité au plan de l'inconnu. Cette partition parfaitement inédite dans la philosophie et le kalām est en revanche préfigurée dans la doctrine de la preuve exposée par al-Ḫwārizmī dans son Algèbre. Al-Ḫwārizmī distingue en effet entre la preuve « par la cause » (bi-al-ʿilla), qui consiste à transférer une certaine déduction géométrique au plan de l'algèbre et la preuve « par l'expression » (bi-al-lafẓ) qui opère directement sur les expressions algébriques, qu'elle réduit analytiquement. En se fondant sur un texte d'Abū Hāšim consacré à la connaissance humaine qui paraît se référer à l’œuvre d'al-Ḫwārizmī, l'article suggère pour finir que le parallèle conceptuel étroit entre la doctrine de la preuve d'al-Ḫwārizmī et la doctrine du signe d'Abū Hāšim pourrait ne pas être une simple coïncidence. Deux appendices ont été ajoutés. Le premier traite de la lecture par al-Fārābī de la théorie de l'inférence d'Abū Hāšim. Le second, en s'appuyant sur toutes les données disponibles, établit pour la première fois les dates correctes et précises de la vie d'Abū Hāšim., AbstractThis article aims to unravel the doctrine of the “sign from the manifest to the hidden” of Abū Hāšim al-Ğubbāʾī (888-933). It shows that Abū Hāšim tended to interpret this sign as an inference, of which he recognized two main types: Type-1 (the “community of evidence”, al-ištirāk fī al-dalāla) proceeds by analytical deduction of concepts by neutralizing the conditions of their realization, i. e. their ontological basis. This is, typically, the procedure most directly consonant with Abū Hāšim's modal ontology. Type-2 (the “community of cause”, al-ištirāk fī al-ʿilla) exhibits the same causal relationship at the known and unknown levels and considers causality at the known level to be itself the cause of causality at the unknown level. This partition was completely new in philosophy and kalām at the time of Abū Hāšim, but it is foreshadowed in al-Ḫwārizmī’s Algebra. In this book, al-Ḫwārizmī distinguishes between proof “by cause” (bi-al-ʿilla), which consists in transferring a certain geometric deduction to algebra, and proof “by expression” (bi-al-lafẓ), which operates directly on algebraic expressions, which it reduces analytically. A text by Abū Hāšim devoted to human knowledge that seems to refer to the work of al-Ḫwārizmī suggests, finally, that the close parallel between al-Ḫwārizmī’s doctrine of proof and Abū Hāšim's doctrine of the sign may not be a mere coincidence. Two appendices have been added. The first deals with al-Fārābī’s reading of Abū Hāšim's theory of inference. The second, based on all available data, establishes for the first time the correct and precise dates of Abū Hāšim's life.This article aims to restore the doctrine of the "sign from the manifest to the hidden" of Abū Hāšim al-Ğubbāʾī (888-933). It shows that Abū Hāšim tended to interpret this sign as an inference, of which he recognized two main types: type-1 (the "community of proof", al-ištirāk fī al-dalāla) proceeds by analytical deduction of concepts by neutralizing the conditions for the realization of the latter, that is to say their ontological foundation. It is, typically, the procedure most directly consonant with Abū Hāšim's modal ontology. Type-2 (the "community of cause", al-ištirāk fī al-ʿilla) exhibits the same relation of causality on the plane of the known and on the plane of the unknown and considers that the causality on the plane of the known is itself the cause of causality at the level of the unknown. This partition, completely new in philosophy and kalām, is on the other hand prefigured in the doctrine of proof exposed by al-Ḫwārizmī in his Algebra. Al-Ḫwārizmī indeed distinguishes between proof “by cause” (bi-al-ʿilla), which consists in transferring a certain geometric deduction to the plane of algebra, and proof “by expression” (bi-al-ʿilla). lafẓ) which operates directly on algebraic expressions, which it reduces analytically. Based on a text by Abū Hāšim on human knowledge that appears to refer to the work of al-Ḫwārizmī, the article concludes by suggesting that the close conceptual parallel between al-Ḫwārizmī's doctrine of proof Ḫwārizmī and Abū Hāšim's sign doctrine might not be a mere coincidence. Two appendices have been added. The first deals with al-Fārābī's reading of Abū Hāšim's theory of inference. The second, drawing on all available data, establishes for the first time the correct and precise dates of Abū Hāšim's life.
...More
Article
Cohoe, Caleb;
(2013)
There must be a First: Why Thomas Aquinas Rejects Infinite, Essentially Ordered, Causal Series
(/isis/citation/CBB001201144/)
Article
Naoya Iwata;
(2021)
Aristotle on Geometrical Potentialities
(/isis/citation/CBB103445778/)
Article
Fiorentino, Francesco;
(2007)
Causalità, infinito e sostanza in Francesco d'Ascoli
(/isis/citation/CBB001020537/)
Chapter
Caroti, Stefano;
(2006)
Nicolas d'Autrécourt, la génération, la corruption et l'altération
(/isis/citation/CBB001020317/)
Article
Karine Chemla;
(2018)
The Proof Is in the Diagram: Liu Yi and the Graphical Writing of Algebraic Equations in Eleventh-Century China
(/isis/citation/CBB786651004/)
Thesis
La Nave, Federica;
(2005)
Belief Without Proof from Ancient Geometry to Renaissance Algebra
(/isis/citation/CBB001560809/)
Article
Srećko Kovač;
(2020)
On causality as the fundamental concept of Gödel’s philosophy
(/isis/citation/CBB991048612/)
Book
Karen Bennett;
(2017)
Making Things Up
(/isis/citation/CBB739865359/)
Article
Waldegg, Guillermina;
(2001)
Ontological Convictions and Epistemological Obstacles in Bolzano's Elementary Geometry
(/isis/citation/CBB000101855/)
Book
Yrjönsuuri, Mikko;
(2001)
Medieval Formal Logic: Obligations, Insolubles and Consequences
(/isis/citation/CBB000102010/)
Article
Nascimento, Carlos Arthur Ribeiro do;
(2008)
Avicena e as Ciências Mistas
(/isis/citation/CBB000950536/)
Book
Dominique Tournès;
(2022)
Histoire du calcul graphique
(/isis/citation/CBB952248492/)
Article
Leïla Hamouda;
Yassine Hachaichi;
(2021)
Note sur l'extraction de la racine carrée d'un entier chez ibn Al-Hayṯam et comparaison avec Al-Baġdādī
(/isis/citation/CBB183440774/)
Book
(1986)
Della radice de' numeri e metodo di trovarla (Trattatello di algebra e geometria) dal Codice Ital. 578 della Biblioteca Estense di Modena
(/isis/citation/CBB000040832/)
Chapter
Hélène Bellosta;
(2012)
La destinée arabe des Données d’Euclide
(/isis/citation/CBB209738412/)
Article
Charlotte-V. Pollet;
(2020)
The Procedure of the Section of Pieces of Areas in Li Ye and Yang Hui’s Works: Genealogy of Diagrams and Equations
(/isis/citation/CBB466865729/)
Article
Corry, Leo;
(2013)
Geometry and Arithmetic in the Medieval Traditions of Euclid's Elements: A View from Book II
(/isis/citation/CBB001213490/)
Article
Marc Moyon;
(2019)
À propos d’algorithmes mathématiques élémentaires dans un corpus de textes arabo-latins du Moyen Âge
(/isis/citation/CBB120307549/)
Chapter
Moyon, Marc;
(2012)
Algèbre & Pratica geometriæ en Occident médiéval latin: Abu Bakr, Fibonacci et Jean de Murs
(/isis/citation/CBB001200506/)
Article
Oaks, Jeffrey A.;
(2011)
Al-Khayyām's Scientific Revision of Algebra
(/isis/citation/CBB001210380/)
Be the first to comment!