Dedekind, Richard (Author)
Weber, Heinrich (Author)
Haffner, Emmylou (Translator)
L'article Theorie des fonctions algebriques d'une variable publie en 1882 par les mathematiciens allemands Richard Dedekind et Heinrich Weber est fondateur de la geometrie algebrique moderne. Dedekind et Weber y reecrivent avec des outils algebrico-arithmetiques une large partie des concepts inventes pres de vingt ans auparavant par Bernhard Riemann pour l'etude des courbes algebriques. Pour cela, ils transferent a la theorie des fonctions de Riemann l'appareil conceptuel developpe par Dedekind en theorie des nombres et sa methodologie ensembliste et arithmetique, elargissant la feconde analogie entre geometrie et arithmetique. Nous en presentons la premiere traduction francaise. Accompagnee d'annotations et d'une preface, cette traduction donne aux lecteurs les clefs pour mieux comprendre cet article seminal, et sa place dans notre modernite mathematique, en le replacant dans son contexte mathematique mais egalement dans son contexte epistemologique. Cet ouvrage servira autant le philosophe desireux d'ancrer sa reflexion dans l'histoire des mathematiques que l'historien qui souhaiterait comprendre certaines racines epistemologiques de cet episode du developpement des mathematiques, que le mathematicien soucieux d'explorer l'histoire et la philosophie de sa discipline. The article Theory of algebraic functions of a variable published in 1882 by the German mathematicians Richard Dedekind and Heinrich Weber is the founder of modern algebraic geometry. Dedekind and Weber rewrite there with algebraic-arithmetic tools a large part of the concepts invented almost twenty years earlier by Bernhard Riemann for the study of algebraic curves. For this, they transfer to Riemann's theory of functions the conceptual apparatus developed by Dedekind in number theory and its set-theoretic and arithmetic methodology, broadening the fruitful analogy between geometry and arithmetic. We present the first French translation. Accompanied by annotations and a preface, this translation gives readers the keys to better understand this seminal article, and its place in our mathematical modernity, by placing it in its mathematical context but also in its epistemological context. This book will serve both the philosopher wishing to anchor his reflection in the history of mathematics and the historian who would like to understand certain epistemological roots of this episode in the development of mathematics, as well as the mathematician wishing to explore the history and philosophy of his discipline.
...MoreReview François Lê (2021) Review of "Theorie Des Fonctions Algebriques d'Une Variable". Historia Mathematica (pp. 94-96).
Article
Emmylou Haffner;
(2017)
Strategical Use(s) of Arithmetic in Richard Dedekind and Heinrich Weber's Theorie Der Algebraischen Funktionen Einer Veränderlichen
Book
Cantor, Georg;
Ferreirós, José;
(2006)
Fundamentos para una teoría general de conjuntos: Escritos y correspondencia selecta
Article
J. Climent Vidal;
J. Soliveres Tur;
(2018)
The Modernity of Dedekind’s Anticipations Contained in what Are Numbers and What Are They Good for?
Chapter
McLarty, Colin;
(2006)
Emmy Noether's “Set Theoretic” Topology: From Dedekind to the Rise of Functors
Book
Gray, Jeremy;
Parshall, Karen Hunger;
(2007)
Episodes in the History of Modern Algebra (1800--1950)
Book
Thomas Sonar;
Karin Reich;
(2014)
Der Briefwechsel, Richard Dedekind-Heinrich Weber
Article
Reck, Erich H.;
(2013)
Frege, Dedekind, and the Origins of Logicism
Chapter
Avigad, Jeremy;
(2006)
Methodology and Metaphysics in the Development of Dedekind's Theory of Ideals
Article
J. Climent Vidal;
J. Soliveres Tur;
(2018)
Correction to: The modernity of Dedekind’s anticipations contained in What are numbers and what are they good for?
Book
Marchisotto, Elena;
Smith, James T.;
(2007)
The Legacy of Mario Pieri in Geometry and Arithmetic
Article
Hollings, Christopher;
(2014)
Investigating a Claim for Russian Priority in the Abstract Definition of a Ring
Book
Grattan-Guiness, I.;
(2000)
Search for Mathematical Roots, 1870-1940: Logics, Set Theories and the Foundations of Mathematics from Cantor Through Russell to Gödel
Chapter
Frei, Günther;
(1989)
Heinrich Weber and the emergence of class field theory
Chapter
Beaney, Michael;
(2006)
Frege and the Role of Historical Elucidation: Methodology and the Foundations of Mathematics
Article
Yap, Audrey;
(2011)
Gauss' Quadratic Reciprocity Theorem and Mathematical Fruitfulness
Article
Catherine Goldstein;
(2016)
«Découvrir des principes en classant» : la classification des formes quadratiques selon Charles Hermite
Book
Marc Moyon;
(2023)
Le 'liber Augmenti Et Diminutionis: Contribution a L'histoire Des Mathematiques Medievales
Article
Gana, Francesco;
(1985)
Peirce e Dedekind: La definizione di insieme finito
Article
Medvedev, F. A.;
(1984)
Über die Abstrakten Mengenlehre von Cantor und Dedekind
Book
Elena Anne Corie Marchisotto;
Francisco Rodriguez-Consuegra;
James T. Smith;
(2021)
The Legacy of Mario Pieri in Foundations and Philosophy of Mathematics
Be the first to comment!