Article ID: CBB001252715

Ten Misconceptions from the History of Analysis and Their Debunking (2013)


The widespread idea that infinitesimals were eliminated by the great triumvirate of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d'Alembert, Cauchy, and others.

Citation URI

Similar Citations

Thesis Keele, Lisa; (2008)
Theories of Continuity and Infinitesimals: Four Philosophers of the Nineteenth Century (/isis/citation/CBB001560801/) unapi

Article Moore, Gregory H.; (2008)
The Emergence of Open Sets, Closed Sets, and Limit Points in Analysis and Topology (/isis/citation/CBB000950203/) unapi

Article Gert Schubring; (2019)
Letters to Weierstraß by Italian Mathematicians (/isis/citation/CBB198160793/) unapi

Article Mormann, Thomas; Katz, Mikhail; (2013)
Infinitesimals as an Issue of Neo-Kantian Philosophy of Science (/isis/citation/CBB001320796/) unapi

Article Moore, Matthew E.; (2002)
A Cantorian Argument Against Infinitesimals (/isis/citation/CBB000300363/) unapi

Book Cantor, Georg; Ferreirós, José; (2006)
Fundamentos para una teoría general de conjuntos: Escritos y correspondencia selecta (/isis/citation/CBB000930382/) unapi

Chapter Bottazzini, Umberto; (2003)
Complex function theory, 1780--1900 (/isis/citation/CBB000355272/) unapi

Article Borovik, Alexandre; Katz, Mikhail G.; (2012)
Who Gave You the Cauchy-Weierstrass Tale? The Dual History of Rigorous Calculus (/isis/citation/CBB001252708/) unapi

Article Ferreirós, José; (2004)
The Motives behind Cantor's Set Theory -- Physical, Biological, and Philosophical Questions (/isis/citation/CBB000500123/) unapi

Article Mechthild Koreuber; (2015)
Zur Einführung einer begrifflichen Perspektive in die Mathematik: Dedekind, Noether, van der Waerden (/isis/citation/CBB619659341/) unapi

Book Gray, Jeremy; (2008)
Plato's Ghost: The Modernist Transformation of Mathematics (/isis/citation/CBB000950298/) unapi

Article Emmylou Haffner; (2019)
From Modules to Lattices: Insight into the Genesis of Dedekind's Dualgruppen (/isis/citation/CBB728342102/) unapi

Article Español González, Luis; (2004)
La Dialéctica del Cálculo Infinitesimal (/isis/citation/CBB000530021/) unapi

Article Roshdi Rashed; (2013)
Descartes et l'infiniment petit (/isis/citation/CBB698670085/) unapi

Article Gardies, Jean-Louis; (1989)
La conception néo-platonicienne de l'abstraction chez Dedekind, Cantor, Frege et Peano (/isis/citation/CBB000033632/) unapi

Authors & Contributors
Ferreirós, José
Katz, Mikhail G.
Dujac, Pierre
Gardies, Jean-Louis
Grattan-Guinness, Ivor
Moore, Matthew E.
Historia Mathematica
Bollettino di Storia delle Scienze Matematiche
Revue Philosophique de la France et de l' Étranger
Science in Context
Perspectives on Science
Princeton University Press
Indiana University
Mathematical analysis
Set theory
Dedekind, Richard
Cantor, Georg Ferdinand Ludwig
Weierstrass, Karl Theodor
Cohen, Hermann
Cassirer, Ernst
Hilbert, David
Time Periods
19th century
20th century, early
20th century, late
17th century

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment