Article ID: CBB000930656

The Contributions of Hilbert and Dehn to Non-Archimedean Geometries and Their Impact on the Italian School (2007)

unapi

In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes' axiom and Legendre's theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn's work. We will see that, if Archimedes' axiom does not hold, the hypothesis on the existence and the number of parallel lines through a point is not related to the hypothesis on the sum of the inner angles of a triangle. Hilbert himself returned to this problem giving a very interesting model of a non-Archimedean geometry in which there are infinitely many lines parallel to a fixed line through a point while the sum of the inner angles of a triangle is equal to two right angles. Keywords : David Hilbert, Max Dehn, Federico Enriques, Roberto Bonola, Non-Archimedean geometry

...More
Citation URI
https://data.isiscb.org/isis/citation/CBB000930656/

Similar Citations

Article Argante Ciocci; (2015)
Luca Pacioli e l'Archimede latino (/isis/citation/CBB290781922/)

Book Enrico Giannetto; Giulia Giannini; (2009)
Da Archimede a Majorana: la fisica nel suo divenire (/isis/citation/CBB945473809/)

Article Stillwell, John; (2014)
Ideal Elements in Hilbert's Geometry (/isis/citation/CBB001213909/)

Article Sieg, Wilfried; (2014)
The Ways of Hilbert's Axiomatics: Structural and Formal (/isis/citation/CBB001213914/)

Chapter Arcangelo Rossi; (2017)
Federigo Enriques between popularization and scientific criticism (/isis/citation/CBB951087422/)

Book Caterina Genna; (2021)
Federigo Enriques matematico e filosofo (/isis/citation/CBB703132259/)

Book Enriques, Federigo; Simili, Raffaella; (2000)
Per la scienza: Scritti editi e inediti (/isis/citation/CBB000400942/)

Article Nastasi, Tina; (2008)
La storia del pensiero scientifico e il suo significato nell'opera di Federigo Enriques (/isis/citation/CBB001024085/)

Book Alberto Cogliati; (2024)
La geometria non euclidea. Una breve storia dall’antichità a Poincaré (/isis/citation/CBB276091257/)

Chapter Giulia Giannini; (2009)
Poincaré, la nozione di gruppo e il Programma di Erlangen di F. Klein (/isis/citation/CBB227666735/)

Chapter Villaggio, Piero; (2006)
On Enriques's Foundations of Mechanics (/isis/citation/CBB000774505/)

Article Pejlare, Johanna; (2007)
Torsten Brodén's Work on the Foundations of Euclidean Geometry (/isis/citation/CBB000773211/)

Book Gabriele Lolli; (2016)
Tavoli, sedie, boccali di birra: David Hilbert e la matematica del Novecento (/isis/citation/CBB100106060/)

Authors & Contributors
Ciocci, Argante
Giannini, Giulia
Cogliati, Alberto
Corry, Leo
Enriques, Federigo
Giannetto, Enrico
Journals
Bollettino di Storia delle Scienze Matematiche
Perspectives on Science
Physis: Rivista Internazionale di Storia della Scienza
Historia Mathematica
Historia Scientiarum: International Journal of the History of Science Society of Japan
Kwartalnik Historii Nauki i Techniki
Publishers
Guaraldi
Bibliopolis
Carocci Editore
Franco Angeli
Raffaello Cortina Editore
Pavia University Press
Concepts
Mathematics
Geometry
Physics
Non-euclidean geometry
Biographies
Logic
People
Enriques, Federigo
Hilbert, David
Archimedes
Poincaré, Jules Henri
Einstein, Albert
Klein, Felix
Time Periods
19th century
20th century, early
20th century
Renaissance
Ancient
15th century
Places
Italy
Europe
Rome (Italy)
China
Germany
Greece
Comments

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment