Concept ID: CBA000114192

Non-euclidean geometry

Show 69 citations related to Non-euclidean geometry
Show 69 citations related to Non-euclidean geometry as a subject or category


Description Term used during the period 2002-present

Permalink
data.isiscb.org/isis/authority/CBA000114192
Publications timeline | Click to expand
Updated timeline is loading. Please wait. The server may be processing several jobs...
Related places

Related Citations

Book Alberto Cogliati (2024)
La geometria non euclidea. Una breve storia dall’antichità a Poincaré. (/isis/citation/CBB276091257/) unapi

Article Giulio Peruzzi; Valentina Roberti (2023)
Helmholtz and the geometry of color space: Gestation and development of Helmholtz’s line element. Archive for History of Exact Sciences (pp. 201-220). (/isis/citation/CBB084267730/) unapi

Article Jemma Lorenat (2022)
An Okapi Hypothesis: Non-Euclidean Geometry and the Professional Expert in American Mathematics. Isis: International Review Devoted to the History of Science and Its Cultural Influences (pp. 85-107). (/isis/citation/CBB066890396/) unapi

Article Vittorio Hösle (2022)
Antieuklidisch oder nichteuklidisch? Tertium datur! Einige methodologische Reflexionen zur Wissenschaftshistorie anlässlich des Anachronismusvorwurfes gegen Imre Tόths Aristotelesdeutung (Anti-Euclidean or non-Euclidean? Tertium datur! Some Methodological Reflections on the History of Science on Occasion of the Accusation of Anachronism against Imre Tóth's Interpretation of Aristotle). Sudhoffs Archiv: Zeitschrift fuer Wissenschaftsgeschichte (pp. 222-250). (/isis/citation/CBB383762874/) unapi

Article Jesper Lützen (2021)
Hjelmslev's geometry of reality. Historia Mathematica (pp. 95-116). (/isis/citation/CBB761009444/) unapi

Article Amanda Paxton (2021)
The Hard Math of Beauty: Gerard Manley Hopkins and "Spectral Numbers". Victorian Studies (pp. 246-270). (/isis/citation/CBB150662150/) unapi

Article Alberto Cogliati (2016)
Schouten, Levi-Civita and the Notion of Parallelism in Riemannian Geometry. Historia Mathematica (pp. 427-443). (/isis/citation/CBB798870530/) unapi

Book De Risi, Vincenzo (2015)
Mathematizing Space: The Objects of Geometry from Antiquity to the Early Modern Age. (/isis/citation/CBB843280666/) unapi

Chapter De Risi, Vincenzo (2015)
Introduction. In: Mathematizing Space: The Objects of Geometry from Antiquity to the Early Modern Age (pp. 1-13). (/isis/citation/CBB849662645/) unapi

Chapter Jeremy Gray (2015)
A Note on Lines and Planes in Euclid’s Geometry. In: Mathematizing Space: The Objects of Geometry from Antiquity to the Early Modern Age (pp. 65-73). (/isis/citation/CBB826243941/) unapi

Article Biagioli, Francesca (2014)
Hermann Cohen and Alois Riehl on Geometrical Empiricism. HOPOS (pp. 83-105). (/isis/citation/CBB001421705/) unapi

Article Ambrosi, Gerhard Michael (2012)
Pre-Euclidean Geometry and Aeginetan Coin Design: Some Further Remarks. Archive for History of Exact Sciences (pp. 557-583). (/isis/citation/CBB001251104/) unapi

Article Kjeldsen, Tinne Hoff; Carter, Jessica (2012)
The Growth of Mathematical Knowledge---Introduction of Convex Bodies. Studies in History and Philosophy of Science (p. 359). (/isis/citation/CBB001221693/) unapi

Article Abardia, Judit; Reventós, Agustí; Rodríguez, Carlos J. (2012)
What Did Gauss Read in the Appendix?. Historia Mathematica (pp. 292-323). (/isis/citation/CBB001251202/) unapi

Article Chen, Huiyong (2011)
Study on the Approach to Realize the Thought of Gauss' Non-Euclidean Geometry. Ziran Kexueshi Yanjiu (Studies in the History of Natural Sciences) (pp. 230-240). (/isis/citation/CBB001210056/) unapi

Article Yan, Chen-guang; Deng, Ming-li (2009)
Riemann's Idea of Geometry and its Impact on the Theory of Relativity. Kexue Jishu Zhexue Yanjiu (Studies in Philosophy of Science and Technology) (pp. 82-101). (/isis/citation/CBB000952285/) unapi

Article Christiansen, Andreas (2009)
Bernt Michael Holmboe (1795--1850) and His Mathematics Textbooks. British Society for the History of Mathematics Bulletin (p. 105). (/isis/citation/CBB000931934/) unapi

Chapter Giulia Giannini (2009)
Poincaré, la nozione di gruppo e il Programma di Erlangen di F. Klein. In: Da Archimede a Majorana: la fisica nel suo divenire (pp. 201-209). (/isis/citation/CBB227666735/) unapi

Article Tanács, János (2009)
Grasping the Conceptual Difference between János Bolyai and Lobachevskii's Notions of Non-Euclidean Parallelism. Archive for History of Exact Sciences (p. 537). (/isis/citation/CBB000932085/) unapi

Article Cerroni, Cinzia (2007)
The Contributions of Hilbert and Dehn to Non-Archimedean Geometries and Their Impact on the Italian School. Revue d'Histoire des Mathématiques (p. 259). (/isis/citation/CBB000930656/) unapi

Comments

Be the first to comment!

{{ comment.created_by.username }} on {{ comment.created_on | date:'medium' }}

Log in or register to comment